Flight Instruments and Technology Future Opportunities

Tom Luchik Curt Henry September 18, 2017

Technology Infusion in Flight Instruments

- About a 60-40 split NASA to non-NASA across the Division
 - NASA work is developed through NASA's AO process
 - Non-NASA is opportunity development
 - JPL instruments distinguish themselves by technology, not cost
 - Many instances of MDL-centered technology
- NASA Business
 - Business is largely proposal-based
 - Few directed instruments for more than a decade
 - Instruments are selected entirely on competitive basis
 - Science and implementation evaluated
 - Competed missions usually come with the instrument provider arranged, not usually JPL (although last New Frontiers broke this mold)
- Non-NASA generally not space flight, more often airborne
 - Used at JPL to bridge a TRL gap from 4-6
 - Also technology distinguished
- Challenge Technology infusion is almost always seen as RISK

Broad Instrument and Technology Portfolio

System-level product lines:

- Spectrometers, polarimeters, and radiometers
- Imaging, optical, thermal, far-IR, microwave, submm., mass, Raman, FTIR, absorption, LIBS
- Imaging systems
- Cameras, microscopic imagers, imaging spectrometers
- Advanced optical and metrology systems
- High contrast, interferometer, active/adaptive, spaceborne telescopes
- In-situ instruments for chemical and elemental analysis
- Cryogenic coolers and cryogenic instruments

Components

- Semi- and superconducting detectors and focal planes
- Advanced optical elements, gratings and precision slits
- Black Silicon absorbers
- Lasers
- Amplifiers, mixers, receivers, digital filters, MMICs
- Microfluidic devices
- Quantum computing

The Plan Forward Today

- Deliver on current commitments
- More instrument developments today than any other period over the last 15 years
 - 4 Mars 2020 (SHERLOC, PIXL, MOXIE, EECam)
 - 5 Earth Science (EcoStress, MAIA, SWOT AMR, Sentinel AMR/HRMR, TEMPEST-D)
 - 3 Astrophysics (Euclid, WFIRST CGI, SPARCS)
 - 2 Europa Clipper (ICEMag, MISE)
 - 1 HEOMD (S.A.M.)
 - 1 non-NASA high fidelity testbed (ITB)
 - 1 Planetary Technology Demo (DSOC)

Note: Blue indicates MDL product development and delivery

The Plan Forward For tomorrow & beyond

- Invest in the future
 - Infrastructure new e-beam machine
 - Utilize 5-year plan for future investments
 - New science instrument capabilities based on technology
 - BIRD based spectrometers (CIRAS)
 - Delta-doped CCD based UV instrumentation
 - Chemical laptop (JPL NEXT)
 - Microseismometers
 - Look at system technologies
 - Get small, because small fits everywhere (TEMPEST-D, CalSPEC)
- Look at opportunities that allow technology risk for capability demonstration
 - ISS instrumentation
 - CubeSat-sized instrumentation
- Propose broadly because history shows no ability to predict future

Opportunities Near Term

- New Frontiers 15 Instruments proposed to JPL and non-JPL missions
 - Some legacy-based (e.g. thermopile based, TLS, PIXL)
 - Some new technology based (e.g. quad-pole ion trap MS, green Raman, micro CE)
- Potential Europa Lander
 - Will propose 5 or 6 instruments/subsystems
 - Some as JPL lead, some as partnered subsystem delivery
 - Mostly new technology based
- MIDEX
 - FINESSE in Step 2 (grating based spectrometer to 5μm)
- Other (opportunity-based)
 - CaliSpec VisIR Imagining spectrometer
 - Osprey Cubesat-sized Dyson spectrometer

Summary

- The present is very busy
 - Multiple flight instruments dependent on MDL capabilities
 - Delivery is imperative
- 5 year outlook
 - Also looks strong although relies on continued success in NASA
 AO process
 - Mix of well-established instrument capabilities and instruments with New capability (technology)
 - Allow AO process to sort out acceptable development risk
 - Continue opportunity development with non-NASA sponsors
 - ROSES
 - RTD/JPL NEXT investments support new capability development and maturation

